Molecular analysis of the major *Phytophthora* species on cocoa

A. A. Appiah^{ab}‡, J. Flood^b, S. A. Archer^a and P. D. Bridge^{c*}†§

^aDepartment of Biology, Imperial College, Silwood Park, Buckhurst Road, Ascot SL5 7PY, ^bCABI Bioscience, UK Centre, Bakeham Lane, Egham TW20 9TY; and ^oMycology Section, Royal Botanic Gardens, Kew, Surrey TW9 3AH and School of Biological & Chemical Sciences, Birkbeck College University of London, Malet Street, London WC1E 7HX, UK

The internally transcribed spacer (ITS) regions of the ribosomal RNA (rRNA) gene cluster of 161 isolates of *Phytophthora* species involved in pod rot, stem canker and leaf blight of cocoa were analysed to determine inter- and intraspecific variation in this disease complex. The species *P. palmivora*, *P. megakarya*, *P. capsici*, *P. citrophthora* and *P. nicotianae* could all be clearly distinguished by PCR amplification of the ITS region followed by restriction analysis with *Hae*III, *Hinf*I, *Pvu*II and *Alu*I. This method provided a relatively rapid identification procedure for these species, and was able to distinguish isolates that had previously been misidentified by morphological methods. Sequence analysis showed that the four main cocoa-associated species formed two distinct groups, one comprising *P. capsici* and *P. citrophthora*, and the other *P. palmivora* and *P. megakarya*. Detailed sequence analysis and comparison with published literature suggested that *P. capsici* isolates from cocoa may be closely related to *P. tropicalis*, a species recently described from *Cyclamen* and *Dianthus*.

Keywords: interspecific variation, rDNA-ITS region, RFLPs

Introduction

Phytophthora black pod is the most serious disease constraint to cocoa production worldwide, especially in West and Central Africa, where some 65% of the world's cocoa is largely cultivated by subsistence farmers (Assoumou, 1997; ICCO, 1998). Four main species of *Phytophthora* are known to cause black pod disease, and these vary in both their aggressiveness and the level of crop loss caused. *Phytophthora megakarya* is the most aggressive and can cause between 60 and 100% crop loss (Djiekpor *et al.*, 1981; Dakwa, 1988). In contrast, *P. palmivora* is less aggressive and can cause crop losses of 4·9–19% (Blencowe & Wharton, 1961; Dakwa, 1984); this species is more aggressive than *P. capsici* (Lawrence *et al.*, 1982). *Phytophthora citrophthora* is more aggressive than *P. palmivora*

*To whom correspondence should be addressed.

†E-mail: pdbr@bas.ac.uk

‡Present address: Department of Molecular & Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.

Spresent address: British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK.

Accepted 21 October 2003

or *P. capsici*, and requires less time for zoospore germination and penetration on unwounded, detached pods (Campêlo *et al.*, 1982). Single reports of other *Phytophthora* species causing black pod include *P. botryosa* (Chee & Wastie, 1970), *P. heveae* (Lozano & Romero, 1984), *P. katsurae* (Liyanage & Wheeler, 1989) and *P. megasperma* (Zentmyer, 1988), although these are not considered major problems for cocoa production.

Phytophthora species have historically been delimited by their morphology, cytology and biochemistry (Sansome et al., 1975; Brasier & Griffin, 1979; Kaosiri & Zentmyer, 1980; Hardham et al., 1986; Appiah et al., 2003). There are, however, difficulties in using phenotypic taxonomic characters, in that some characters overlap between species, and significant variation can, and does, occur among isolates of the same species (Brasier & Griffin, 1979; Erwin & Ribeiro, 1996; Appiah, 2001; Appiah et al., 2003). Molecular approaches can provide reliable methods for pathogen identification and disease diagnosis, and the technology available has sufficient sensitivity to enable detection of variation between organisms at the level of a single base change (Schlick et al., 1994). Various DNA-based techniques have been used to evaluate inter- and intraspecific variation in Phytophthora species, including nuclear and mitochondrial DNA RFLPs (Förster et al., 1987, 1989; Oudemans & Coffey, 1991; Lee et al., 1993; Ersek et al., 1994), and analysis of sequences in the

ribosomal RNA (rRNA) gene cluster (Cooke & Duncan, 1997; Förster et al., 2000). Analysis of the internal transcribed spacer (ITS) region of the nuclear rRNA repeat unit has been used to determine interspecific variation (Cooke et al., 1996; Crawford et al., 1996; Cooke & Duncan, 1997), and sequence differences have been used to distinguish between some Phytophthora species (Lee & Taylor, 1992; Ristaino et al., 1998). ITS sequence data have also been used to study the phylogenetic relationships of many Phytophthora species (Lee & Taylor, 1992; Brasier et al., 1999) and have clarified some of the taxonomic relationships within the genus (Cooke et al., 2000; Förster et al., 2000). However, most of these studies have involved noncocoa Phytophthora species, and in cases where some of the species occurring on cocoa were studied, only a small number of isolates were included. Selection of these isolates has been based on a number of different criteria, and so the results may not be entirely representative of the cocoa Phytophthora species. For example, Lee & Taylor (1992) included only seven isolates from cocoa (belonging to four species) out of 27 isolates sequenced, and Cooke et al. (2000) included 17 isolates belonging to two species found on cocoa in a large sequence analysis involving 234 isolates of 50 species of Phytophthora and other Oomycetes. Similarly, Förster et al. (2000) included single isolates of P. capsici and P. citrophthora from cocoa in a study where 57 isolates of *Phytophthora* were sequenced.

Rapid identification and diagnosis of the major *Phytophthora* species (*P. palmivora, P. megakarya, P. capsici* and *P. citrophthora*) that cause pod rot of cocoa world-wide remains a problem. This paper presents a detailed analysis of the ITS regions of 161 isolates mainly received as *P. palmivora* and *P. megakarya*, but also including isolates from the less frequently reported species *P. capsici* and *P. citrophthora*, predominantly from cocoa in West and Central Africa. The analysis was undertaken in order to characterize the variability within and between the main species of *Phytophthora* causing pod rot and other diseases of cocoa, and to determine possible phylogenetic relationships between them.

Methods

Collection of isolates

One hundred and forty isolates of *Phytophthora* spp. were collected from cocoa-growing countries worldwide. Twenty-one additional isolates from plants other than cocoa were also obtained for comparison (Table 1). All identifications were confirmed by morphological characterization and mating type designation as reported by Appiah (2001) and Appiah *et al.* (2003).

Growth of cultures and DNA extraction

Cultures were grown in a shaking incubator at 27°C for 3–5 days in 250 mL conical flasks containing 60 mL V8 broth (20% V8 juice in distilled water). Mycelium was

harvested by vacuum filtration, washed with sterile distilled water (SDW) and freeze-dried overnight. DNA was extracted from ground, freeze-dried mycelium following a modification of the method of Raeder & Broda (1985). The modification involved the introduction of two incubation steps: the first after addition of the extraction buffer (0·2 M Tris-HCl pH 8·5, 0·25 M NaCl, 25 mM EDTA, 0·5% SDS) where the homogenate was incubated at 60°C for 20 min; the second incubation was under the same conditions after the phenol-chloroform-isoamyl alcohol (25 : 24 : 1) extraction was completed. The extracted DNA was redissolved in $T_{10}E_1$ buffer (10 mM Tris; 1 mM EDTA, pH 8) and stored at -20° C.

PCR amplification and restriction of the ITS region

Polymerase chain reaction (PCR) amplification of the ITS region of the template DNA was performed using the primers ITS1 and ITS4 as described by White et al. (1990). PCR was undertaken in 50 μ L volumes consisting of 33.25 μ L HPLC-grade water, 5 μ L 10× PCR buffer, 4 μ L dNTPs (at 5 mM each), $1.5 \ \mu L \ 25 \ mM MgCl_2$, $2 \ \mu L \ (20 \ pmol)$ each of ITS1 and ITS4 primers, 0.25 µL (0.5 U) Tth polymerase and 2 μ L template DNA. Cycling conditions were 94°C for 5 min, followed by 30 cycles of 94°C for 1 min, 55°C for 45 s and 72°C for 2 min. After the cycling reactions there was a final step of 72°C for 6 min. Eleven restriction endonucleases (AluI, AvaII, CfoI, HaeIII, HhaI, HinfI, MspI, PstI, PvuI, PvuII and XbaI) were screened to determine restriction sites with two isolates of each species. The restriction enzymes that produced clear and potentially diagnostic patterns were selected for analysis of all of the Phytophthora isolates. Approximate sizes of the digested products were determined by comparison with a standard 100 bp molecular marker ladder (Promega Corporation, Madison, WI, USA) after 3% NuSieve agarose gel electrophoresis in TBE buffer (Tris-base 10.8 g L⁻¹, boric acid 5.5 g L⁻¹, EDTA 0.93 g L⁻¹, pH 8) and staining in ethidium bromide $(0.5 \ \mu g \ mL^{-1})$.

Cloning and sequencing of ITS-PCR products

The ITS regions of the rDNA of 18 selected isolates (see Table 3) were cloned using pGEM-T Easy Vector System II kits (Promega). The transformed cultures were screened on duplicate LB/ampicillin/IPTG/X-Gal plates overnight at 37°C. Five white colonies were picked randomly from each isolate and cultured in 2 mL LB/ampicillin medium overnight. The selected recombinant plasmids were checked for the presence of the inserted DNA fragment by PCR by boiling 10 μ L of the bacterial culture in 40 μ L SDW at 95°C for 10 min, removing the cell debris by centrifugation, and setting up a standard PCR with the ITS primers using 5 μ L of the supernatant. PCR cycling conditions were the same as above. The resulting PCR products were visualized after gel electrophoresis and staining in ethidium bromide.

One millilitre of each recombinant plasmid culture was purified using the Wizard Plus Minipreps DNA Purification System kit (Promega). The purified plasmid DNA was

Table 1 Details of isolates used in study

Study	Collection/	Country	Year of		RFLP
no.	other number	(region/location)	isolation	Host	group
Phytophthora	capsici				
1	IMI 325899	Brazil	1988	Theobroma cacao	PCAP1
2	IMI 325900	Brazil	1988	T. cacao	PCAP1
3	IMI 304412ª	Cote d'Ivoire (Abidian)	1988	T. cacao	PCAP1
4	IND 44	India (Kerala, Kanara)	1999	T. cacao	PCAP3
5	IND 42	India (Kerala, Rani)	1999	Т. сасао	PCAP3
6	IMI 357546	Mexico	1993	T. cacao	PCAP2
7	IMI 230564	Nigeria	1989	Capsicum sp.	PCAP2
8	PPaE9 ^b /IMI 386149	Taiwan	1993	Hedera helix	PCAP2
P. citrophthor	a				
9	93 P61/IMI 386150	Indonesia (North Sulawesi)	1993	T. cacao	PCIT
P. megakarya					
10	CAM 187	Cameroon	_	T. cacao	PM1
11	NS 270	Cameroon (Fako, Bagimgili)	_	T. cacao	PM1
12	NS 264/IMI 386156	Cameroon (Fako, Idewa)	_	T. cacao	PM1
13	NS 268/IMI 386157	Cameroon (Fako, Sange)	_	T. cacao	PM1
14	NS 260/IMI 386154	Cameroon (Manyu, Ayoke)	_	T. cacao	PM1
15	NS 128/IMI386153	Cameroon (Mefou, Nomays)	_	T. cacao	PM1
16	CAM 184/IMI 386159	Cameroon (Meme)	_	T. cacao	PM1
17	CAM 309/IMI 386160	Cameroon (Meme)	_	T. cacao	PM1
18	NS 275/IMI 386161	Cameroon (Meme)	_	T. cacao	PM1
19	NS 308/IMI 386162	Cameroon (Meme)	1995	Т. сасао	PM1
20	NS 229/IMI 386155	Cameroon (Ndé, Sangwa)	_	T. cacao	PM1
21	IMI 337098	Equatorial Guinea	1990	T. cacao	PM2
22	EG 63/IMI 386164	Equatorial Guinea (Bio Muni)	_	T cacao	PM1
23	EG 1B/IMI 386163	Equatorial Guinea (Bioko)	_	T cacao	PM1
24	G4·112·1/IML386165	Gabon (Ovem-Est)	1982	T cacao	PM1
25	BBPSI-4	Ghana	1999	T cacao	PM1
26	GHA 12/IMI 386217	Ghana	1990	T cacao	PM1
27	IMI 337104	Ghana	1990	T cacao	PM1
28		Ghana (ASH A'buokrom)	1008	T cacao	PM1
20		Ghana (ASH, A'buokrom)	1990	T. cacao	PM1
20	AGT-AR 20 AK/IMI 286172	Ghana (ASH, Abdokioni)	1008	T. 02020	DM1
31		Chana (ASH, Akomadan)	1009	T. cacao	
20	AK 1/11VII 300173	Chana (ASH, Akomadan)	1990		
32	AK 2/11VII 300174	Chana (ASH, Akomadan)	1990		
33	AKA 22		1998		PIVII
34	AKA 23	Ghana (ASH, Akomadan)	1998	I. cacao	PIVI I
35			1998		PIVII
36		Gnana (ASH, Akomadan)	1998	1. cacao	PIVII
37	AKP 2/IMI 386179	Ghana (ASH, Akomadan)	1998	I. cacao T	PM1
38		Gnana (ASH, Akomadan)	1998	1. cacao	PIVII
39	ASH-AB 11	Ghana (ASH, Bibiani)	1998	I. cacao	PM1
40	ASH-AM 16	Ghana (ASH, Mpasaaso)	1998	I. cacao	PM1
41	ASH-M 29	Ghana (ASH, Mpasaaso)	1998	I. cacao	PM1
42	ASH-M 44	Ghana (ASH, Mpasaaso)	1998	I. cacao	PM1
43	ASH-M 49	Ghana (ASH, Mpasaaso)	1998	T. cacao	PM1
44	ASH-A 14	Ghana (ASH, Nkawie)	1998	I. cacao	PM1
45	DYT-NYI/IMI 386187	Ghana (ASH, Nyinahin)	1997	T. cacao	PM1
46	ASH-O 48	Ghana (ASH, Otaakrom)	1998	T. cacao	PM1
47	PK 1/IMI 386189	Ghana (ASH, Pokukrom)	1998	T. cacao	PM1
48	PK 2/IMI 386190	Ghana (ASH, Pokukrom)	1998	T. cacao	PM1
49	PKA 1/IMI 386191	Ghana (ASH, Pokukrom)	1998	T. cacao	PM1
50	PKA 2/IMI 386192	Ghana (ASH, Pokukrom)	1998	Т. сасао	PM1
51	ASH-DA 39	Ghana (ASH, Tepa)	1998	Т. сасао	PM3
52	ASH-T 10	Ghana (ASH, Tepa)	1998	T. cacao	PM1
53	ASH-AW 37	Ghana (ASH, Wansanbire)	1998	T. cacao	PM1
54	ASH-W 21	Ghana (ASH, Wansanbire)	1998	T. cacao	PM1
55	ASH-W24	Ghana (ASH, Wansanbire)	1998	T. cacao	PM1
56	BBA 13	Ghana (B/A, Bechem)	1998	T. cacao	PM1

Table 1 Continued

Study	Collection/	Country	Year of		REL P
no.	other number	(region/location)	isolation	Host	group
 57	CSD REC 1/IMI 286100	Chana (R/A Rocham)	1007	Τ. 02020	DM1
58	VKK-BEC/IMI 386200	Ghana (B/A, Bechem)	1997	T. cacao	PM1
50		Chana (B/A, Neonkokrom)	1007	T. 02020	DM1
59		Chana (B/A, Nhonkokrom)	1007	T. cacao	DM1
61		Chana (V/P)	1997	T. Cacao	
62		Chana (V/R)	1994	T. Cacao	
62		Chana (V/R, Avaline)	1997		PIVI I DM1
63		Ghana (V/R, Klave)	1997	1. cacao	PIVII
64	VR 10/11/1 386206		1997		PIVII
65		Ghana (VR, Kpeve)	1997	I. cacao	PIVIT
66	AGM-ESS/IMI 386208	Gnana (W/R, Essam)	1997	I. cacao T	PM1
67	GHWR 12	Gnana (W/R, Essam)	1998	I. cacao	PM1
68	MAN-ESS/IMI 386209	Ghana (W/R, Essam)	1997	I. cacao	PM1
69	KBM-JBO/IMI 386210	Ghana (W/R, Juabeso)	1997	T. cacao	PM1
70	NGR 16	Nigeria (Ondo)	1995	T. cacao	PM1
71	TG 3	Togo (Kloto, Kouma)	1991	T. cacao	PM1
72	TG 6	Togo (Kloto, Kouma)	1991	T. cacao	PM1
P. nicotianae					
73	IMI 359462	Malaysia (Ranau)	1988	Bougainvillea sp.	PN
P. palmivora					
74	IMI 325923	Costa Rica	1988	T. cacao	PP1
75	CR 196	Costa Rica (La Lola)	1988	T. cacao	PP1
76	CR 197	Costa Rica (Turrialba)	1988	<i>Eucalyptus</i> sp.	PP1
77	MMP1	Ghana	1999	Persea americana	PP1
78	AKC	Ghana (ASH, Akomadan)	1998	T. cacao	PP1
79	IMI 324466	Ghana (ASH, Akomadan)	1988	T. cacao	PP1
80	JA-NYI/IMI 386223	Ghana (ASH, Nyinahin)	1997	T. cacao	PP1
81	FF-OFF/IMI 386224	Ghana (ASH, Offinso)	1997	T. cacao	PP1
82	JANASH 02/IMI 386225	Ghana (ASH, Offinso)	1997	Т. сасао	PP1
83	NBA-OFF/IMI 386226	Ghana (ASH, Offinso)	1997	T cacao	PP1
84	OWOEE6/IML386227	Ghana (ASH, Offinso)	1997	T cacao	PP1
85	CSD-BEC-2/IMI 386228	Ghana (B/A Bechem)	1997	T cacao	PP1
86	KM-GSO/IMI 386229	Ghana (B/A, Goaso)	1997	T cacao	PP1
87	BA 31/IMI 386230	Ghana (B/A, Mim)	1007	T cacao	PP1
99	KEP 01/IMI 386231	Chana (E/R, Kukurantumi)	1008	T. 02020	DD1
80	OPDI 20/IMI 286222	Chana (E/R, Kukulantumi)	1008	T. cacao	DD1
09		Chana (E/R, Kusi)	1990	T. cacao	
90	OPRI 33/IMI 386233	Ghana (E/R, Kusi)	1998		
91	OPRI 35/IMI 386234	Ghana (E/R, Kusi)	1998	1. cacao	PP1
92	GHER I/IIVII 386235	Ghana (E/R, Taro)	1997	I. cacao	PPI
93	PPSR 2/IMI 386236	Ghana (E/R, Tato)	1997	I. cacao	PP1
94	TP 1/IMI 386258	Ghana (E/R, Tato)	1997	I. cacao	PP1
95	TP 2/IMI 386259	Ghana (E/R, Iafo)	1997	I. cacao	PP1
96	TP 3/IMI 386260	Ghana (E/R, Tafo)	1997	T. cacao	PP1
97	TP 4/IMI 386261	Ghana (E/R, Tafo)	1997	T. cacao	PP1
98	TP 5/IMI 386262	Ghana (E/R, Tafo)	1997	T. cacao	PP1
99	VR 3	Ghana (VR, Kpedze)	1998	T. cacao	PP1
100	VR 13	Ghana (VR, Kpeve)	1998	T. cacao	PP1
101	GHWR 7/IMI 386265	Ghana (W/R, Adukromyede)	1998	T. cacao	PP1
102	GHWR 34/IMI 386266	Ghana (W/R, Akontombra)	1998	T. cacao	PP1
103	GHWR 85/IMI 386267	Ghana (W/R, Akontombra)	1998	T. cacao	PP1
104	W46/IMI 386268	Ghana (W/R, Asankragwa)	1998	T. cacao	PP1
105	GHWR 38/IMI 386269	Ghana (W/R, Asawinso)	1998	T. cacao	PP1
106	GHWR 89/IMI 386270	Ghana (W/R, Asawinso)	1998	T. cacao	PP1
107	GHWR 48/IMI 386271	Ghana (W/R, Ayinabirim)	1998	Т. сасао	PP1
108	GHWR 77/IMI 386272	Ghana (W/R, Buako)	1998	Т. сасао	PP1
109	W10/IMI 386291	Ghana (W/R, Buako)	1998	T. cacao	PP1
110	W11/IMI 386292	Ghana (W/R, Buako)	1998	T. cacao	PP1
111	GHWR 3/IMI 386274	Ghana (W/R, Essam)	1998	T. cacao	PP1
112	GHWR 31/IMI 386289	Ghana (W/R, Juabeso)	1998	T. cacao	PP1
113	GHWR 58/IMI 386290	Ghana (W/R, Juabeso)	1998	T. cacao	PP1

Table 1 Continued

Study	Collection/	Country	Year of		RFLP
no.	other number	(region/location)	isolation	Host	group
114	W52/IMI 386293	Ghana (W/R, Juabeso)	1998	T. cacao	PP1
115	GHWR 33/IMI 386276	Ghana (W/R, Juabeso)	1998	T. cacao	PP1
116	W63/IMI 386275	Ghana (W/R, Juabeso)	1998	T. cacao	PP1
117	GHWR 36/IMI 386277	Ghana (W/R, Kukumso Dade)	1998	T. cacao	PP1
118	W64/IMI 386294	Ghana (W/R, Kukumso)	1998	T. cacao	PP1
119	GHWR 19/IMI 386282	Ghana (W/R, Nyamebekyere)	1998	T. cacao	PP1
120	GHWR 32/IMI 386283	Ghana (W/R, S/Bekwai)	1998	T. cacao	PP1
121	GHWR 71/IMI 386284	Ghana (W/R, S/Bekwai)	1998	T. cacao	PP1
122	GHWR 76/IMI 386285	Ghana (W/R, S/Bekwai)	1998	T. cacao	PP1
123	GHWR 90/IMI 386286	Ghana (W/R, S/Bekwai)	1998	T. cacao	PP1
124	W1/IMI 386287	Ghana (W/R, S/Bekwai)	1998	T. cacao	PP1
125	W40/IMI 386288	Ghana (W/R, W/Akropong)	1998	T. cacao	PP1
126	IMI 325922	Hawaii	1988	Carica papava	PP1
127	92 P14	Indonesia	1992	T. cacao	PP1
128	94 P42/IMI 386297	Indonesia (East Java)	1994	T. cacao	PP1
129	94 P43/IMI 386298	Indonesia (East Java)	1994	Т. сасао	PP1
130	94 P44/IMI 386299	Indonesia (East Java)	1994	Т. сасао	PP1
131	94 P54/IMI 386300	Indonesia (East Java)	1994	Т. сасао	PP1
132	94 P55/IML 386301	Indonesia (East Java)	1994	T cacao	PP1
133	94 P56/IMI 386302	Indonesia (East Java)	1994	T cacao	PP1
134	94 P57	Indonesia (East Java)	1994	Т. сасао	PP1
135	94 P05/IML386304	Indonesia (Jambi)	1994	T cacao	PP1
136	94 P15/IML 386305	Indonesia (Jambi)	1994	T cacao	PP1
137	94 P18	Indonesia (Jambi)	1994	T cacao	PP1
138	90P26/IML386307	Indonesia (North Sulawesi)	1990	T cacao	PP1
139	94 P37/IML386308	Indonesia (North Sulawesi)	1994	T cacao	PP1
140	IMI 359456	Malaysia (Tawau)	1988	T cacao	PP1
141	IMI 359457	Malaysia (Tawau)	1988	T cacao	PP1
142	IMI 182591	Nigeria	1974	T cacao	PP1
143	IMI 344485	Papua New Guinea (Keravat)	1991	T cacao bark	PP1
144	BNP/IMI 386309	Taiwan	1996	Areca catechu	PP1
145	PPaC55	Taiwan	1988	Citrus sp	PP2
146	PPaC59/IML386311	Taiwan	1989	Citrus sp	PP1
147	PPaCa3	Taiwan	1992	Cattleva sp	PP1
148	PPaCa5/IML386313	Taiwan	1993	Cattleva sp	PP1
149	PPaCu2	Taiwan	1995	Hedvchum sp.	PP1
150	PPaCv3/IML386315	Taiwan	1992	Cymbidium oiwakensis	PP1
151	PPaDn1	Taiwan	1990	Dendrobium sp	PP1
152	PPaE1/IML 386317	Taiwan	1990	Hedera helix	PP1
153	PPaM2	Taiwan	1997	Mangifera indica	PP1
154	PPaO9	Taiwan	1996	Oncidium sp	PP1
155	PPaP33/IML386321	Taiwan	1989	Carica papava root	PP1
156	PPaP72/IML386322	Taiwan	1997	Carica papaya, root	PP1
157	PPaPa2/IMI 386323	Taiwan	1995	Banbionedillum sp	PP1
158	PPaWa2	Taiwan	1990	Svzvaujm samaragenes	PP1
159	TBIN 02/IMI 386325	Tobago (Les Coteaux)	1988	T cacao	PP1
160	6604	Togo (Kloto Palime)	1987	T cacao	PP1
161	TRIN 011MI 386327	Trinidad (St Augustine)	1988	T cacao	PP1
101		minudu (or Augustine)	1300	1. 00000	

^alsolate previously identified as *P. katsurae* but found to be *P. capsici*.

^bIsolates received from source as *P. palmivora* but found to be otherwise.

eluted in 100 μ L nuclease-free water, and the final DNA concentration was determined by UV spectrophotometry from a 500 μ L (1 : 100 dilution) volume of each sample.

The DNA samples were sequenced on a LI-COR Automated DNA Sequencer 4200 IR2 (LI-COR Inc., Lincoln, NE, USA) using LI-COR SequiTherm EXCEL II DNA Sequencing Kits-LC and a single-labelled primer protocol. The cycle sequencing protocol employed a 17 μ L premix of 7·2 μ L 3·5× SequiTherm EXCEL II sequencing buffer, 1 μ L each of IRD700 or IRD800 labelled M13 universal and M13 reverse primers, 1 μ L SequiTherm EXCEL II DNA Polymerase (5 U μ L⁻¹), 250 fmoles of template DNA and 5·8 μ L deionized water. Two microlitres each of SequiTherm EXCEL II-LC Termination mix A, C, G or T and 4 μ L of

premix were added to each reaction tube. Cycling conditions were 95°C for 5 min, followed by 30 cycles of 95°C at 30 s, 50°C at 15 s and 70°C at 1 min. On completion of PCR 3 μ L of stop/loading buffer was added to each reaction.

One microlitre of each reaction was loaded onto a precast sequencing gel composed of 7.5 mL Rapid Gel XL Solution 40% (Amersham Pharmacia Biotech UK Ltd, Little Chalfont, UK), 21 g urea, 5 mL 10× TBE Long Run buffer, 28 mL distilled water, 500 μ L DMSO, 350 μ L 10% fresh ammonium persulphate and 75 μ L TEMED. The electrophoresis conditions were 1500 V, 35 mA and 40 W at 50°C. Gels were prerun for 15–30 min before loading samples. Sequence data were collected using the BASEIMAGE IR² software (LI-COR).

Sequence analysis

SEQUENCHER 2.0 software (Gene Codes Corporation, Michigan, WI, USA) was used to remove vector contamination, correct miscalled bases, and generate contigs from the forward and reverse sequences of individual clones. The contigs from clones belonging to the same species were aligned to generate consensus sequences representing the various species. A BLAST search (Altschul et al., 1997) was performed to compare the consensus sequences generated with those deposited in GenBank (www.ncbi.nlm.nih.gov). The consensus sequences for each species were aligned with each other through CLUSTALW (www.ebi.ac.uk/clustalw/) to determine variable regions or base sequences unique to each species or isolate. Puzzle coefficients (transition/transversion ratio and coefficient of variation) were calculated using TREE PUZZLE 5.0. Distance matrices between all pairs of sequence from the multiple alignments were calculated and trees were generated by neighbour joining (NJ). Bootstrap analyses of 500 interactions were performed by the Consense routine in the phylogenetic inference package (PHYLIP) (www.hgmp.mrc.ac.uk). The dendrogram was viewed by importing the calculated values into TREEVIEW (http://taxonomy.zoology.gla.ac.uk/rod/rod.html).

Results

ITS-PCR amplification and restriction analysis

Generally, PCR amplification of the ITS region of the *Phytophthora* isolates gave products of approximately 900

base pairs in length, with small variations in a few isolates. Four of the 11 restriction enzymes tested (*HaeIII, HinfI, PvuII* and *AluI*) gave fragment patterns that distinguished between *P. megakarya, P. palmivora* and *P. capsici,* and these four enzymes were used to digest all PCR products. The diagnostic restriction patterns produced with the four restriction enzymes for the three major species (*P. palmivora, P. megakarya* and *P. capsici*) are shown in Fig. 1, and full details are given in Table 2.

Sixty isolates identified as *P. megakarya* gave consistent patterns, and two (21 and 51) differed in their *Hin*fI and *Alu*I patterns, respectively (Table 2). Eighty-eight isolates identified as *P. palmivora* gave consistent patterns, and one isolate received as *P. palmivora* (145) produced different fragment patterns with *Hae*III and *Hin*fI, but the same pattern as the other isolates belonging to the species with *Pvu*II and *Alu*I restriction enzymes (Table 2).

Within P. capsici, ITS-PCR product size differences of approximately 20-40 bp were observed from isolates from the same, as well as different, geographic origins. Eight isolates were considered to belong to P. capsici. These were the six isolates received as P. capsici, one isolate from cocoa received as *P. katsurae*, and one isolate from Hedera helix received as P. palmivora (Appiah et al., 2003). These isolates produced one of three different sets of patterns with the four restriction enzymes (Tables 1 and 2). In eight of the 12 individual patterns, the sum of the restriction fragments was greater than the original size of the PCR products. For instance, AluI produced three RFLP groups of P. capsici with those designated PCAP2 and PCAP3 isolates (from India and Taiwan, and Mexico and Nigeria, respectively) having fragments with a greater total than the approximate 900 bp PCR product (Table 2), and a similar situation was seen with P. megakarya 51, and with HinfI for P. megakarya isolate 21. PCAP1 isolates from Brazil/Côte d'Ivoire differed from the others in producing an additional HinfI fragment of 170 bp.

DNA sequencing and phylogenetic analyses

The sequences of the entire ITSI/5·8s/ITSII regions, together with short termini from the large and small subunit genes, were obtained from the 18 isolates selected (Table 3). The BLAST searches confirmed identification of the sequences from *P. megakarya*, *P. palmivora* and *P. capsici* isolates. The two isolates received as single representatives of *P. citrophthora* and *P. nicotiana* were

Figure 1 Diagnostic restriction patterns of ITS-PCR products for the three main *Phytophthora* species on cocoa. Lanes 2–6: *P. palmivora* undigested PCR product; PCR product digested with *Hae*III, *Hinf*1, *Alu*I and *Pvu*II; lanes 7–11: *P. megakarya*, samples as *P. palmivora*; lanes 12–16: *P. capsici* samples as *P. palmivora*; lanes 1 and 17: 100 bp molecular markers.

Table 2 Restriction profiles of RFLP groups within Phytophthora species on cocoa

		Approximate ITS-PCR	ITS-RFLP sizes (bp) obtained with selected restriction endonuclease enzymes				
RFLP group ^a	No. of isolates	product size (bp)	Haelli	Hinfl	Pvull	Alul	
PCAP1	3	≈900	570, 330	290, 170, 150, 130, 110	900	720, 180	
PCAP2	3	≈860	550, 310	290, 150, 130, 110	860	720, 550, 180	
PCAP3	2	≈900	550, 310	290, 150, 130, 110	900	700, 550, 180, 120	
PCIT	1	≈900	490, 330, 80	320, 200, 130, 110	900	550, 190, 160	
PM1	60	≈900	490, 410	340, 260, 170, 130	900	370, 220, 180, 120	
PM isolate 21 (IMI 337098)	1	≈900	490, 410	340, 290, 260, 170, 130	900	370, 220, 180, 120	
PM isolate 51 (ASH-DA39)	1	≈900	490, 410	340, 260, 170, 130	900	370, 350, 220, 180, 120	
PN	1	≈900	750, 400, 150	340, 260, 170, 130	900	720, 220, 180, 120	
PP1	88	≈900	900	340, 260, 170, 130	700, 200	520, 170, 150	
PP isolate 145 (PpaC55)	1	≈900	320, 250, 180, 120	900	700, 200	520, 170, 150	

^aPCAP, P. capsici; PCIT, P. citrophthora; PM, P. megakarya; PN, P. nicotiana; PP, P. palmivora.

Table 3 Sizes of rDNA ITS regions and flanking sequences in five species of Phytophthora from cocoa

		GenBank		Sections of rDNA sequenced and their sizes (bp)					
Isolate	Study number	Accession number	Origin	18S-SSU	ITS I	5·8S	ITS II	28.S-LSU	Total
P. capsici									
IMI 325900	2	AF467083	Brazil	11	173	153	426	39	802
IMI 304412	3	AF467084	Côte d'Ivoire	11	173	153	428	39	804
IND 44	4	AF467085	India	11	173	153	427	39	803
P. citrophthora									
93P61	9	AF467086	Indonesia	11	195	153	435	39	833
P. nicotianae									
IMI 325462	73	AF467087	Malaysia	11	229	153	422	39	854
P. palmivora									
IMI 325923	74	AF467088	Costa Rica	11	215	154	432	40	852
94P43	129	AF467089	Indonesia	11	213	153	420	39	836
GHWR 48	107	AF467090	Ghana	11	214	153	421	39	838
VR 13	100	AF467091	Ghana	11	220	156	423	40	850
TP 1	94	AF467092	Ghana	11	215	157	419	39	841
PPaP33	155	AF467093	Taiwan	11	213	153	420	39	836
PPaC55	145	AF467094	Taiwan	11	214	153	420	39	837
P. megakarya									
ASH-A25	28	AF467095	Ghana	11	213	153	417	39	833
ASH-DA39	51	AF467096	Ghana	11	213	153	417	39	833
MAG-AVA	62	AF467097	Ghana	11	213	153	421	39	837
NS 264	12	AF467098	Cameroon	11	213	153	418	39	834
CAM 184	16	AF467099	Cameroon	11	214	153	417	39	834
TG 3	71	AF467100	Togo	11	213	154	417	39	834

also correctly identified by BLAST searches, whereas the isolate received as *P. katsurae* matched to *P. capsici*, in agreement with the RFLP results. All sequences were deposited in GenBank with accession numbers AF467083 to AF4670100 (Table 3). The average sizes of the ITS I/ 5·8s/ITS II regions were 753 bp for *P. capsici*, 783 bp for *P. citrophthora*, 804 bp for *P. nicotianae*, 791 bp for *P. palmivora* and 784 bp for *P. megakarya*. The termini of

the 18S and 28S subunits were highly conserved within all the *Phytophthora* species, and the little sequence variation within the 5.8S subunit was limited to point mutations and a few indels (insertions/deletions; 1–2 bases), predominantly among the *P. palmivora* isolates. There was significant variation in terms of deletions, insertions and substitutions between species within the ITS regions, especially within ITS I, although several highly conserved

Position ^a	Length ^b	Remarks			
ITS I region					
12-24	13	Single (C) substitution in P. nicotianae			
26-47	22	Single (T) substitution in <i>P. nicotianae</i>			
73–77	5	No species variation present in this segment			
80-84	5	No species variation present in this segment			
87–92	6	No species variation present in this segment			
94–103	10	No species variation present in this segment			
108–112	5	No species variation present in this segment			
120-132	13	No species variation, a single (C) insertion in one P. palmivora isolate			
140–185	46	Single (A) substitution in <i>P. nicotianae</i> ; single substitution and insertions in some			
		P. palmivora isolates			
ITS II region					
339–355	17	Single (T) substitution in <i>P. nicotianae</i>			
358–364	7	Single (T) substitution in one P. palmivora isolates			
366–386	21	Single substitutions in <i>P. citrophthora</i> (C) and <i>P. palmivora</i> (T)			
389-411	23	Single substitution in <i>P. nicotianae</i> (T) and <i>P. megakarya</i> (G)			
419-424	6	No species variation present in this segment			
434-442	9	Single (C) substitution in P. megakarya			
447–478	32	Single substitutions in P. nicotianae (2As) and in P. palmivora (C)			
494–506	13	Single (A) substitution in <i>P. nicotianae</i>			
521–526	6	No species variation present in this segment			
529-545	17	Single (T) substitution in P. palmivora and P. megakarya			
549-595	47	Single substitutions in <i>P. nicotianae</i> (2As and T); in <i>P. megakarya</i> (A) and in some			
		P. palmivora isolates			
599-604	6	Single (C) substitution in P. megakarya			
614-620	7	Single (A) substitution in <i>P. palmivora</i>			
635–643	9	Single (A) substitution in <i>P. megakarya</i>			
657–671	15	No species variation present in this segment			
679–683	5	No species variation present in this segment			
695–714	20	Single substitutions (T) in <i>P. citrophthora</i>			
717–728	12	No species variation present in this segment			
755–763	9	No species variation present in this segment			

Table 4 Conserved regions within the ITS I and II regions of Phytophthora species

^aNucleotide positions were determined using *P. capsici* isolate IMI 325900 sequence as reference (Fig. 4).

^bNumber of nucleotides in the conserved region counted along the reference sequence.

regions were present in both ITS I and ITS II sequences. The conserved regions varied considerably in length, ranging from 3 to 73 nucleotides (Table 4). Generally the 5'- and 3'-termini of both ITS I and ITS II sequences were highly conserved in all the *Phytophthora* species, with variation mostly limited to a few (one to three) base changes.

The neighbour-joining tree grouped the species on three distinct branches (Fig. 2). *Phytophthora palmivora* isolates formed a single group, with the *P. megakarya* isolates forming a sister group. These groups were separated by approximately five base changes per 100 bases. The three isolates of *P. capsici* together with the single *P. citrophthora* isolate formed a distinct group, and this was placed separately from the *P. palmivora/P. megakarya* grouping.

All ITS sequences for *P. capsici* available in the EMBL database were downloaded, together with sequences for the recently described *P. tropicalis* (Gerlach & Schubert, 2001). These were aligned with the sequences for *P. capsici* obtained here. Due to differences in sequence lengths two different alignments were undertaken, one for ITS I sequences only (which included most sequences), and one for the full ITS I/5·8/ITS II region (results not

shown). In both of these alignments the cocoa isolates formed a group with *P. tropicalis*. The ITS I alignment included an additional sequence from *P. capsici* from cocoa used in the study of Förster *et al.* (2000), and this sequence also grouped closer to *P. tropicalis*.

Discussion

This study has shown that RFLP analysis of the ITS region can be used effectively to rapidly distinguish between the four main species of *Phytophthora* involved in black pod disease of cocoa.

The *AluI* restriction fragments obtained with isolates of *P. capsici* and *P. megakarya* 51, and the fragments obtained with *HinfI* for *P. megakarya* 21, gave total sizes that were in excess of the apparent size of the original PCR products. This could be attributed to a number of causes, including experimental errors such as contamination, or low enzyme activity due to unoptimized conditions. However, low enzyme activity is unlikely in these cases, as all the isolates were subjected to the same treatment and the complex patterns were largely restricted to the

Figure 2 Relationships of *Phytophthora* species on cocoa based on neighbour-joining analysis of rDNA-ITS region sequences. Numbers adjacent to branch points are bootstrap values from 500 interactions.

eight P. capsici isolates. Contamination is also unlikely, as repeated digestions with freshly extracted DNA samples produced the same results and similar complex patterns were not seen with other enzymes. Similar restriction profiles after digestion with AluI have been observed independently for P. capsici (D. Brayford, CABI, personal communication). A possible explanation for the anomalous patterns is the presence of multiple forms of the rDNA-ITS gene cluster in single isolates. This is not uncommon in fungi, and has been reported in several species including Beauvaria brongniartii, the arbuscular mycorrhizal Glomales, Sclerotium rolfsii and Ascochyta spp. (Neuvéglise et al., 1994; Harlton et al., 1995; Sanders et al., 1995; Fatehi & Bridge, 1998). Harlton et al. (1995) and Fatehi & Bridge (1998) suggested that the different ITS regions might be associated with different nuclei, as the genera they examined were multinucleate. The genus Phytophthora is diploid and multinucleate, and so this may provide an explanation. In many such reported cases the addition of the restriction fragments gave a total that was a multiple of the single PCR product, although this was not the case for the isolates reported here. In some instances the sum of the restriction fragments was less than the size of the complete PCR product. This is due to the production of small fragments that are not visible on the gels, and also to the production of more than one restriction fragment of the same size, that appear as a single band. Both these events are present in these data, and an example is *P. capsici* RFLP group 1, where theoretical digestion with HinfI based on the sequence data gives two fragments of approximately 130 bp (130 and 133 bp) and one fragment of

8 bp. This illustrates that simple band patterns cannot be considered to be completely representative of sequences, and that RFLP data should be supported by sequence data before detailed interpretations are made.

The ITS analysis indicated the presence of subgroups within the *P. capsici* clade, determined by the presence or absence of the additional fragments seen in the *Alu*I ITS digestions. Although the exact nature of the additional fragments found within the ITS region of the *P. capsici* isolates has not been determined, several earlier reports have suggested *P. capsici* to be highly diverse. These include the separation of *P. capsici* into two or three forms based on isoenzyme criteria (Oudemans & Coffey, 1991; Mchau & Coffey, 1994); a high degree of mtDNA diversity (Förster *et al.*, 1989); and, more recently, the detection of two groups based on ITS I sequence analysis (Förster *et al.*, 2000).

Recently, Aragaki & Uchida (2001) used morphological distinctions to describe a new species, *P. tropicalis*, that included isolates previously assigned to '*P. palmivora* MF4' on cocoa. BLAST searching of the *P. capsici* sequences from isolates from cocoa obtained here, against other *Phytophthora* sequences held at EMBL, showed that the consensus *P. capsici* sequence was a closer match to two sequences described as from *P. tropicalis* (from *Cyclamen*) than to sequences labelled as *P. capsici* (from *Capsicum*). However, the differences between the most similar sequences were very marginal (98·73 compared with 98·38% similarity), so the correct designation of these isolates remains unclear. The only differences between the consensus ITS1 sequence obtained here and that obtained

by Förster *et al.* (2000) from an isolate from cocoa (AF242788) are two unresolved bases. This sequence, in turn, differs by only two bases from the sequence obtained from *P. capsici* from *Spondias purpurea* (AF242785) by Förster *et al.* in the same study. The alignment of the complete ITS I/5·8/ITS II regions also grouped the cocoa isolates obtained here with *P. tropicalis*; unfortunately only the ITS I sequences are available from the isolates reported from Förster *et al.*, so comparisons of the entire ITS I/5·8/ITS II region cannot be used to provide a more complete comparison. On the basis of the high similarity values it is possible that *P. tropicalis* is synonymous with *P. capsici*, but further complete sequences will be required to confirm this.

The high degree of similarity in the ITS I region suggests that the different species are closely related. For instance, the ITS I regions from P. capsici and P. citrophthora differed by only 21 bases. This size difference was the result of a single base indel and a single continuous indel of 20 bases in P. capsici near the beginning of the ITS I region (Fig. 2). This size difference may have arisen from a single or several mutational events which resulted in a deletion of nucleotides in *P. capsici* or an insertion in *P. citrophthora*. Deletion is the most likely explanation, as the 20 bases absent in P. capsici, plus another 12 continuous bases, are present at the comparable point in the other species sequenced here (P. nicotianae, P. palmivora and P. megakarya), and in other species where sequence data have been deposited (e.g. Cooke et al., 2000). Alternative hypotheses include an insertion event, as found in the other species, or an introgression, which occurred through hybridization (Goodwin, 1997). A close evolutionary relationship is also apparent between P. palmivora and P. megakarya, where the length of the ITS I regions differ by only two nucleotides, and the base sequence differences were limited to one to three base substitutions. The sequence analysis showed that the ITS I region was more variable than the ITS II region between species, and this may indicate different evolutionary rates for the two regions.

RFLPs of PCR products can clearly be used to identify species of *Phytophthora* on cocoa, and although gel visualization of the fragments may not reflect all the sequence information, very minor sequence variations can be identified within species. The use of a PCR-ITS-RFLP approach will help in the monitoring of infections and the spread of the different *Phytophthora* species causing black pod diseases.

Acknowledgements

We gratefully acknowledge the supply of isolates from the following institutions: CRIG, Ghana; CABI Bioscience, UK; BALITKA, Indonesia; CIRAD, France; TARI, Taiwan; CRU-University of Trinidad & Tobago, Trinidad; CATIE, Costa Rica; Plant Protection Services, Malaysia. We also thank Dr D. E. L. Cooke, Scottish Crop Research Institute, for his help on the phylogenetic analysis. The Association of Commonwealth Universities, UK, provided financial assistance.

References

- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25, 3389–402.
- Appiah AA, 2001. Variability of Phytophthora Species Causing Black Pod Disease of Cocoa (Theobroma cacao L.) and Implications for Assessment of Host Resistance. London, UK: University of London, PhD thesis.
- Appiah AA, Flood J, Bridge PD, Archer SA, 2003. Inter- and intraspecific morphometric variation and characterization of *Phytophthora* isolates from cocoa. *Plant Pathology* **52**, 168–80.
- Aragaki M, Uchida JY, 2001. Morphological separation of *Phytophthora capsici* and *P. tropicalis* sp. nov. *Mycologia* 93, 137–45.
- Assoumou J, 1997. L'économie du Cacao. Paris, France: Delarge.
- Blencowe JW, Wharton AL, 1961. Black pod disease in Ghana, incidence of disease in relation to levels of productivity. In: *Report of the 6th Commonwealth Mycology Conference*. London, UK: Cocoa, Chocolate and Confectionery Alliance, 139–47.
- Brasier CM, Griffin MJ, 1979. Taxonomy of Phytophthora palmivora on cocoa. Transactions of the British Mycological Society 72, 111–43.
- Brasier CM, Cooke DEL, Duncan JM, 1999. Origin of a new *Phytophthora* pathogen through interspecific hybridization. *Proceedings of the National Academy of Sciences, USA* **96**, 5878–83.
- Campêlo AMFL, Luz EDMN, de Resnick FCZ, 1982.
 Podridão-parda do cacaueiro, nos Estados da Bahia, Brasil.
 1 virulencia das especies de *Phytophthora. Revisita Theobroma, CEPEC, Itabuna-Brasil, Ano* 12, 1–6.
- Chee KH, Wastie RL, 1970. Black pod disease of cacao. *Planter, Kuala Lumpur* **46**, 294–7.
- Cooke DEL, Duncan JM, 1997. Phylogenetic analysis of *Phytophthora* species based on ITS1 and ITS2 sequences of rRNA. *Mycological Research* **101**, 667–77.
- Cooke DEL, Kennedy DM, Guy DC, Russell J, Unkle SE, Duncan JM, 1996. Relatedness of Group I species of *Phytophthora* as assessed by random amplified polymorphic DNA (RAPDs) and sequences of ribosomal DNA. *Mycological Research* 100, 297–303.
- Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM, 2000. A molecular phylogeny of *Phytophthora* and related Oomycetes. *Fungal Genetics and Biology* **30**, 17–32.
- Crawford AR, Bassam BJ, Drenth A, Maclean DJ, Irwin JAG, 1996. Evolutionary relationships among *Phytophthora* species deduced from rDNA sequences. *Mycological Research* 100, 437–43.
- Dakwa JT, 1984. Nation-wide black pod survey. Joint CRIG/ Cocoa Production Division Project. In: Annual Report of the Cocoa Research Institute, Ghana, 1976/77–1978/79. Tafo (Akim Abuakwa), Ghana: Cocoa Research Institute.
- Dakwa JT, 1988. Changes in the periods for attaining the cocoa black pod disease infection peaks in Ghana. In: Proceedings of the 10th International Cocoa Research Conference, Santo Domingo, Dominican Republic. Lagos, Nigeria: Cocoa Producers' Alliance, 427–36.

Djiekpor EK, Goka K, Lucas P, Partiot M, 1981. Brown rot of cocoa pod due to *Phytophthora* species in Togo, evaluation and control strategy. *Café Cacao Thé* **25**, 263–8.

Ersek T, Schoeltz JE, English JT, 1994. PCR amplification of species-specific DNA sequences can distinguish among *Phytophthora* species. *Applied and Environmental Microbiology* **60**, 2616–21.

Erwin DC, Ribeiro OK, 1996. *Phytophthora Diseases Worldwide*. St Paul, MN, USA: American Phytopathological Society Press.

Fatehi J, Bridge PD, 1998. Detection of multiple rRNA-ITS regions in isolates of *Ascochyta*. *Mycological Research* **102**, 762–6.

Förster H, Kinscherf TG, Leong SA, Maxwell DP, 1987. Molecular analysis of the mitochondrial genome of *Phytophthora. Current Genetics* 12, 215–8.

Förster H, Kinscherf TG, Leong SA, Maxwell DP, 1989. Restriction fragment length polymorphism of the mitochondrial DNA of *Phytophthora megasperma* isolated from soyabean, alfalfa and fruit trees. *Canadian Journal of Botany* 67, 529–37.

Förster H, Cummings MP, Coffey MD, 2000. Phylogenetic relationships of *Phytophthora* species based on ribosomal ITS I DNA sequence analysis with emphasis on Waterhouse group V and VI. *Mycological Research* 104, 1055–61.

Gerlach WWP, Schubert R, 2001. A new wilt of cyclamen caused by *Phytophthora tropicalis* in Germany and the Netherlands. *Plant Disease* **85**, 334.

Goodwin SB, 1997. The population genetics of *Phytophthora*. *Phytopathology* **87**, 462–73.

Hardham AR, Suzaki E, Perkin JL, 1986. Monoclonal antibodies to isolate species, and genus specific components on the surface of zoospores and cysts of the fungus *Phytophthora cinnamomi*. *Canadian Journal of Botany* **64**, 311–21.

Harlton CE, Lévesque CA, Punja ZK, 1995. Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathology 85, 1269–81.

ICCO, 1998. ICCO Quarterly Bulletin of Cocoa Statistics, Vol. XXIV, No. 3. London, UK: International Cocoa Organization.

Kaosiri T, Zentmyer GA, 1980. Protein, esterase, and peroxidase patterns in the *Phytophthora palmivora* complex from cacao. *Mycologia* 72, 988–1000.

Lawrence JS, Luz EDMN, Resnik FCZ, 1982. The relative virulence of *Phytophthora palmivora* and *P. capsici* on cacao in Bahia, Brazil. In: *Proceedings of the 8th International Cocoa Research Conference, 1981, Cartegena, Colombia.* Lagos, Nigeria: Cocoa Producers' Alliance, 395–400.

Lee SB, Taylor JW, 1992. Phylogeny of five fungus-like prototistan *Phytophthora* species, inferred from the internal

transcribed spacers of ribosomal DNA. *Molecular Biology and Evolution* 9, 636–53.

Lee SB, White TJ, Taylor JW, 1993. Detection of *Phytophthora* species by oligonucleotide hybridization to amplified ribosomal DNA spacers. *Phytopathology* **83**, 177–81.

Liyanage NIS, Wheeler BEJ, 1989. *Phytophthora katsurae* from cocoa. *Plant Pathology* **38**, 627–9.

Lozano TZE, Romero CS, 1984. Estudio taxanomico de aislamientos de *Phytophthora* patogenos de cacao. *Agrociencia* 56, 176–82.

Mchau GRA, Coffey MD, 1994. Evidence for the existence of two distinct subpopulations in *Phytophthora capsici* and a redescription of the species. *Mycological Research* **99**, 89–102.

Neuvéglise C, Brygoo Y, Vercambre B, Riba G, 1994. Comparative analysis of molecular and biological characteristics of strains of *Beauvaria brongniartii* isolated from insects. *Mycological Research* **98**, 322–8.

Oudemans P, Coffey MD, 1991. A revised systematics of twelve papillate *Phytophthora* species based on isozyme analysis. *Mycological Research* **95**, 1025–46.

Raeder U, Broda P, 1985. Rapid preparation of DNA from filamentous fungi. *Letters in Applied Microbiology* 1, 17–20.

Ristaino JB, Madritch M, Truot CL, Parra G, 1998. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus *Phytophthora*. *Applied and Environmental Microbiology* 64, 948–54.

Sanders IR, Alt M, Groppe K, Bolle T, Wiemken A, 1995. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales, application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. *New Phytologist* 130, 419–27.

Sansome E, Brasier CM, Griffin MJ, 1975. Chromosome size differences in *Phytophthora*, a pathogen of cocoa. *Nature* 225, 704–5.

Schlick A, Kuhls K, Meyer W, Lieckfeld E, Borner T, Messner K, 1994. Fingerprinting reveals gamma-ray induced mutations in fungal DNA, implications for the identification of patent strains of *Trichoderma harzianum*. *Current Genetics* 26, 74–8.

White TJ, Bruns TD, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenetics. In: Innis MA, Sninsky DH, White TJ, eds. *PCR Protocols*. London, UK: Academic Press, 315–22.

Zentmyer GA, 1988. Taxonomic relationships and distribution of *Phytophthora* causing black pod of cocoa. In: *Proceedings of the 10th International Cocoa Research Conference*, 1987, *Santo Domingo, Dominican Republic*. Lagos, Nigeria: Cocoa Producers' Alliance, 391–5.